

PERTH MODERN SCHOOL

Exceptional schooling. Exceptional students.

Mini Test Chap 10,12,13 & 14

Semester Two 2018 Mathematics Methods

Calc Assumed (Formula sheet allowed)

Name:

Solutions

Time: 35 minutes

Total:

/38 marks

Working needs to be shown for full marks

33

Question 1 [1 marks]

In how many ways can a hand of five cards be dealt from a deck of 54 cards?

Question 2 [2 marks]

A five-letter 'word' is to be made by arranging the letters of the word WHOLEGRAIN. What is the probability that the word begins with a vowel?

Question 3 [4 marks]

A two-digit number is to be formed from the set of numbers {1, 2, 3, 4, 5, 6}. No repetition is allowed. Find the probability that the number:

a is even
$$\frac{3\times5}{6\times5} = \frac{1}{2}$$

b is less than 30
$$\frac{1 \times 5}{6 \times 5} + \frac{1 \times 5}{6 \times 5} = \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$$
.

is even given that it is less than 30.
$$P(E \mid <30)$$

$$= \frac{P(E \cap <30)}{P(<30)}$$

$$= \frac{1}{2} \times \frac{1}{3} = \frac{1}{3}$$

Calculator Assumed

Page 1 of 4

Question 4 [1 marks]

Question 5 [3 marks]

A graph of the function with equation $y = \cos x$ is transformed by a dilation of factor 2 from the y-axis, and a translation of $\frac{\pi}{3}$ units in the negative direction of the x-axis and 1 unit in the negative direction of the *y*-axis. What is the new equation?

$$y = \cos\left(\frac{1}{2}\left(x + \frac{77}{3}\right)\right) - 1$$

Question 6 [2 marks]

For the equation $\cos(2x) = 1$, the sum of the solutions in the interval $[0, 2\pi]$

Calculator Solve (cos(2x)=1 | 0 < x < 211) >c=0,2TT,TT / .. SUM=3TT/ Question 7 [2 marks]

No Calculator	- ~7
cos 27c=1	[0,217]
0=27	[0,4TT]
eos 0 = 1	_ ~
0 =	0,211,411
x =	0, 17,211

If $\sin \alpha = 0.8$ and $\cos \alpha = 0.6$, what is the value of $\sin (\frac{\pi}{2} + \alpha)$.

Because - on formula sheet sin (0+ 1/2) = cos 0

$$\sin 50^\circ = \sin(180-50)$$
 $\sin \theta = \sin(17-\theta)$

[3 marks] **Question 8**

The vertical distance above the ground of a point on a wheel as it rotates is given by $D(t) = 2 - 2\sin(3\pi t)$, where t is the time in seconds. What is the time in seconds for a full rotation of the wheel.

Ouestion 9

In triangle ABC as shown, $\sin x = \frac{3}{7}$.

What is the value of $\sin y$.

Question 10 [4 marks]

A vertical mast, AD, of height 20 m is supported by two cables attached to the ground at C and B as shown in the diagram. $\angle CAB$ is a right angle. Cable CD is of length 40 m and cable BD is of length 30 m.

What is the angle ABC, to the nearest degree?

Question 11 [3 marks]

From a point on a cliff 400 m above sea level, the angle of depression to a boat is 30°. Find the distance from the foot of the cliff to the boat.

ton
$$60 = \frac{x}{400}$$
 /
 $x = 400 \text{ ten } 60$
 $= 692.8 \text{ m}$

[3 marks] **Question 12**

The diagram shown is a right square-pyramid of height 400 m with its base a square of side 300 m.

$$tan \theta = \frac{400}{150} \sqrt{\frac{8}{3}}$$

If θ is the angle between a sloping face and the base, form an equation which will give the correct value of θ .

Question 13

[5 marks]

A highly volatile substance has an initial mass of 1200 g and its mass is reduced by 12% each second.

a Write a formula that gives the mass of the substance (m) at time (t) seconds.

N

Rearrange this formula to make t the subject.

M = 1200 (888) t

c What mass remains after 10 seconds, correct to 2 decimal places?

334.20 seconds /

d Calculate how long (to the nearest second) it takes until the mass is 10 grams.

37 seconds.

e After how many seconds (to the nearest second) is the mass less than 1 gram?

50 seconds ·

Question 14 [1 marks]

The equation of the graph shown could be

A
$$y = 2^{-x} + 1$$

B
$$v = 2^{-2x}$$

$$v = 2^{-x+2}$$

D
$$v = 2 \times 2^{-x+2}$$

$$(\mathbf{E}) \quad y = 2 \times 2^{-x}$$

